

All-Carbon Microbeads for Proteomics – Differentiating Crosslinker Chemistry for Top-Down and Bottom-Up Workflows.

We use two different types of crosslinkers in our microbeads. The first type of crosslinker is a vinyl crosslinker. Here we use a blend of styrene and divinyl benzene. We call these microbeads **styrene-divinylbenzene (S-DVB)** and **butanediol dimethacrylate (BDDMA)** microbeads.

S-DVB and **BDDMA** are chemically distinct materials. Microbeads formed with these crosslinkers may have the same pore size (100–200 nm), which is large enough to accommodate intact proteins in *both* cases. However, in proteomics, **surface chemistry dictates the application**, while **pore Size dictates the molecular weight limit**.

Differences in their hydrophobicity dictate their "Stickiness" and, consequently, affect nonspecific absorption (**"background noise"**).

BDDMA microbeads are ideal for **bottom-up proteomics** (handling peptides).

S-DVB microbeads are suitable for **top-down proteomics** (handling intact proteins) rather than Bottom-Up (handling peptides).

Why PS-DVB is for Intact Proteins (Top-Down)

The "Velcro Effect": Think of the interaction between the bead and the analyte as Velcro. PS-DVB is "Heavy Duty Velcro": It is purely aromatic (benzene rings) and extremely hydrophobic.

Intact Proteins have huge surface areas with massive hydrophobic patches. When a large, intact protein contacts a PS-DVB bead, it binds via multi-point attachment. It sticks hard. This is excellent for Top-Down Proteomics because:

Trapping: You want to catch diluted proteins from a lysate.

Stability: Proteins often get "stuck." To remove them, you may need harsh solvents (e.g., 90% Formic Acid, Hexafluoroisopropanol) or high pH (pH> 10). S-DVB survives this; BDDA would dissolve.

Why BDDMA is for Peptides (Bottom-Up)

The "Non-Specific Binding" Problem. BDDMA is "Light Duty Tape." It is an acrylate ester. It is hydrophobic, yet it contains oxygen (a polar atom) in its backbone.

The "Hydrophobic Background" Issue: In bottom-up proteomics, one seeks specific peptides (e.g., phosphorylated peptides).

If you try to enrich phosphopeptides on an S-DVB microbead. It is *so hydrophobic* that non-phosphorylated peptides could stick to the S-DVB surface non-specifically. Your purity drops.

BDDMA is more polar. Hydrophobic peptides stick less firmly to the BDDA backbone. This makes BDDMA the superior choice for affinity workflows (e.g., glyco- or phospho-proteomics) because it exhibits lower nonspecific binding.

Comparison: PS-DVB vs BDDMA		
Feature	PS-DVB (Styrene) (100-200 nm Median Pore)	BDDA (Acrylate) (100-200 nm Median Pore)
Chemistry	Aromatic (Benzene rings)	Aliphatic Ester
Primary Interaction	Strong Hydrophobic pi-pi	Moderate Hydrophobic + Polar
Hydrophobicity	Very High (Strong retention)	Moderate (Tunable retention)
Non-specific binding	High (Sticky pi-pi)	Low (Polar ester)
Proteomics Role	Top-Down, Detergent Removal	Bottom-Up Fractionation, PTM Enrichment
Best Target	Intact Proteins (>20 kDa)	Peptides (<5 kDa)
Primary Use	High pH Fractionation, Intact Proteins	HILIC backbone, chemical grafting
pH Stability	pH 1 – 14 (Extreme stability)	pH 2 – 8 (Hydrolyzes in base)
Cleaning	Can be cleaned with NaOH; Can use pH 13, 100% IPA	Cannot be cleaned with NaOH; Must avoid High pH

General Proteomics Applications of S-DVB and BDDMA

Both microbeads are suitable for **upstream sample preparation and fractionation**. Below are the specific proteomics applications for these beads.

1. Solid-Phase Extraction (SPE) & Desalting

This is the most immediate application for 40 μm porous beads. Proteomics samples often contain salts, detergents, or other contaminants that must be removed prior to mass spectrometry (MS).

Workflow: You pack the beads into a cartridge, spin column, or pipette tip.

Mechanism: Reversed-Phase Mode: S-DVB and BDDMA are relatively hydrophobic. Proteins/peptides bind to the beads, while salt is washed away. You then elute the clean peptides with an organic solvent (like acetonitrile). The 40 μm size allows low backpressure, making it easy to push liquid through with a standard pipette or syringe without high-end pumps.

2. Off-Line Peptide Fractionation

Complex samples (such as whole-cell lysate) are too complex for a single MS run. They need to be split into simpler fractions first.

Workflow: Pack the beads into a larger column. Load the digested peptide mixture and elute with a stepwise acetonitrile gradient. Collect fractions (e.g., 10 separate tubes) and analyze each separately.

Application: Reducing sample complexity to increase "proteome coverage" (the number of proteins identified).

Critical Factor: Pore Size. The application depends heavily on the **pore diameter**, not just the bead size (40 μm).

- **Small Pores (<100 \AA):** Good for small peptides; proteins may be excluded (cannot enter).
- **Large Pores (>300 \AA):** Essential if you want to capture intact proteins. If the pores are too small, the available surface area for binding decreases substantially, rendering the beads inefficient.

Summary Recommendation

Start by testing them as a **Solid-Phase Extraction (SPE) phase** for desalting digested bovine serum albumin (BSA).

- **Test:** Pack ~5mg of beads into a pipette tip.
- **Load:** BSA digest in 0.1% Formic Acid.
- **Wash:** 0.1% Formic Acid (removes salts).
- **Elute:** 50-80% Acetonitrile.
- **Analyze:** Run the eluate on a gel or MS to confirm peptide recovery.

Specific Proteomics Applications for 40 μ m PS-DVB

S-DVB microbeads are best suited for **intact large proteins** under harsh conditions. These microbeads are chemically inert "tanks." They can survive conditions that would dissolve BDDMA microbeads.

1. Reversed-Phase Fractionation of Intact Proteins (Top-Down Proteomics)

Problem. In "Top-Down" proteomics, you analyze the entire protein before fragmentation. Standard pores (100–300 Å) are too small; large proteins (>50 kDa) cannot enter them and instead flow past, resulting in poor capacity and resolution.

Why PS-DVB? Large proteins are very hydrophobic: A 200 nm pore allows large proteins (e.g., antibodies, membrane proteins >150 kDa) to enter the bead structure freely. The aromatic rings of Styrene provide strong π - π interactions, thereby improving retention for proteins that might elute too quickly on an acrylate column.

Workflow: Pack a gravity column or large cartridge. Load a complex lysate. Elute with an Acetonitrile/Isopropanol gradient. This separates proteins by hydrophobicity before they are subjected to mass spectrometry.

2. Depletion of High-Abundance Proteins

Problem: Before analyzing blood/serum, you often need to remove Albumin and IgG (which make up ~60-80% of the mass).

Why S-DVB? Large proteins are very hydrophobic. Because S-DVB is highly hydrophobic, it has a strong affinity for large, hydrophobic "sticky" proteins such as albumin. The aromatic rings of Styrene provide strong pi-pi interactions, offering excellent retention for proteins that might elute too quickly on an acrylate column.

Workflow: You can use these beads as a "pre-filter" to soak up high-abundance hydrophobic proteins, allowing smaller, low-abundance biomarkers to pass through for analysis.

3. High-pH Reversed-Phase Fractionation (The "Spider" Fractionator)

Problem: Tryptic peptides often co-elute in standard low-pH (acidic) gradients.

Why S-DVB? You separate peptides at pH 10 (using Ammonium Hydroxide). This changes their charge and elution order, providing "orthogonality" when you run them later on a standard low-pH LC-MS column. Silica columns dissolve at pH > 8. BDDMA (acrylate) hydrolyzes at pH > 9. Only S-DVB is stable at pH 10–12.

Workflow: Pack a column with your S-DVB beads. Load digest. Elute with a gradient of Acetonitrile + 20mM NH₄OH (pH 10). Collect fractions.

4. Depletion of "Sticky" Detergents (Triton X-100 / SDS Removal)

Problem: Detergents kill Mass Specs. You must remove them before analysis.

Why S-DVB? Detergents such as Triton X-100 contain aromatic rings. They adhere irreversibly to S-DVB via "like-dissolves-like" aromatic interactions.

Workflow: Pass your contaminated sample through a small bed of S-DVB. The detergent sticks; the hydrophilic peptides flow through.

Specific Proteomics Applications for 40 μ m BDDMA Beads in Bottom-Up Workflows

1. The "Scout" Column (High-Load Pre-Fractionation)

Problem: Before running a precious sample on an expensive analytical column, you need to "clean" and "simplify" it.

Why BDDMA? Use unmodified BMDA beads as a Reversed-Phase (RP) cleanup step. Acrylates often show "Orthogonal Selectivity" compared to C18. *Standard C18* separates purely by hydrophobicity. BDDMA separates by hydrophobicity + polar interactions (due to the ester oxygens).

Workflow: Pack BDDMA beads into a disposable cartridge. Load massive amounts of peptide digest (e.g., 100 μ g). Perform a "Step Fractionation": Elute with 10%, 20%, 30%, 40%, 50% Acetonitrile. Take these five simpler fractions and run them on your high-res LC-MS. You will identify *peptides differently from* a standard C18 pre-column.

2. "Negative Mode" Depletion

Problem: Sometimes you want to remove the "grease." You are analyzing a membrane protein digest. It is full of extremely hydrophobic transmembrane peptides that might clog your delicate nano-LC column.

Why BDDMA? It is sufficiently hydrophobic to capture the "grease" but sufficiently hydrophilic to allow standard peptides to pass.

The Workflow: Pass the sample through a bed of BDDMA beads in low organic solvent (e.g., 5% ACN). The "super-greasy" peptides stick to the BDDMA. The hydrophilic/soluble peptides flow through. You analyze the flow-through.

Summary

- **Use your S-DVB beads** when you need to trap big, greasy proteins or strip detergents.
- **Use your BDDMA beads** when you want to sort peptides gently.